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SUM.1\1.ARY 

1 

Applying variational methods toa mathematical model 

of the atmosphere an entirely new type of equations 

for forecasting atmospheric parameters is derived. 

The method also defines vertical eigenfunctions to 

the model. In a simplified case some of the eigenfunc­

tions are compared with empirically obtained data and 

conclusions are drawn regarding the validity of some 

of the approximations in the mathematical model. 

SAMMA.NFA':'TNING 

Genom en tillämpning av variationskalkyl på de ekva­

tioner, som definierar en matematisk modell av atmos­

fären härleds en helt ny typ av ekvationer för prog­

nos av modellens parametrar. Metoden definierar också 

vertikala egenfunktioner till modellen. I ett förenk­

lat fall jämförs några av dessa egenfunktioner med 

empiriska data och resultatet utnyttjas för att bedö-

ma riktigheten i några av de approximationer, som gjorts 

i den matematiska modellen. 
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l. INTRODUCTION 

In the terminology of numerical weather prediction a 

forecasting parameter isa function of x,y and t only 

(or \, ~ and t) substituting the dependent variable we 

wish to forecast by means of non-linear predictive 

equations. A compact and very general form for the 

transiormation from a time and space dependent variable 

toa parameter may be obtained by a series expansion. 

Taking for instance the stream function ~(x,y,t,p) as 

dependent variable, the expansion 

~ (x,y,t,p) = I a (x,y,t) F (p) n n 
( l) 

will determine the forecasting parameters an (x,y,t) 

as soon as the functions Fn(p) are given. In inte­

grated models these will be suitably chosen continuous 

weighting functions , while, taking them as delta 

functions, we instead obtain parameters representing 

conditions at prescribed levels . 

The form of the s2rics expansion (1) shows that what we 

in fact are doing, when carrying out the transformation, 

is to utilize the method of variable separation, so 

cornrnon and efficient in solving linear partial differen­

tial equations. However, when application is made to 

non-linear partial differential equations, the purpose 

of the method is not very clear and it is therefore of 

interest to make a comparison between these two very 

different situations. 

In the case of a linear equation, the expansion (1) is 

not arbitrary. Instead, it is defined by the requirement 

that each separate term in the series should exactly 

satisfy the equation and furthermore that the functions 

Fn(p), in this case the eigenfunctions of the problem, 

should satisfy certain boundary conditions. The rate 

of convergence of the series is here not of particular 
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interest, it is dete rmi ned partly by initial conditions, 

i . e . the extent to which various modes are excited 

initially , and partly by damping o r diffusing terms in 

the equation which gene rally re s ult in high frequency 

and high wavenumber modes vanishing rapidly. 

In the non- linear case particular solutions that exactly 

satisfy the equation do not e x ist , e xcept in a few spe­

cial cases which here are of no interest . Therefore, in 

our usual approach toa non-linear problem, the functions 

Fn(p) in (1) remain undetermined and arbitrary and one 

may here choose any complete orthogonal set provided 

boundary condi tions can be satisf ied . For rea sons of 

formal simplicity Fourier functions are often selected 

but again it should be noted that these are not in any 

specific way related to the equation . Due to the non­

linearity energy transfer will take place between pos­

sible modes, and the rate of convergence in the series-

or in other terms the energy spectrum will depend 

on the choice of the orthogonal set . Obviously one may 

here by misfortune make a poor choice and end up with 

a very slow convergence . In the application discussed 

here this is equivalent toa need for many parameters 

before a satisfactory approximation of the dependent 

variable is obtained . 

In order to economise on the number of parameters and, 

by this, also on computer time and capacity we obviously 

need a method by which a best choice or a consistent 

derivation of the expanding functions F (p) can be made. n 
With this purpose in mind it is natural to return to the 

principle of eigenfunctions but, in view of the non­

linearity, to generalize and extend their definintion. 

Retaining the condition that they should satisfy proper 

boundary conditions we may now define them by the 

relaxed requirement that they should satisfy the equation 

not exactly but instead as well as possible . This rneans 

that the determination of eigenfunc tions transforms into 

a well-defined variational probl em. The definition of 
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2. 

eigenfunctions to linear equations will remain un­

changed as a special, degenerate case , since here 

the minimum will be exactly zero . 

Some properties of generalized eigenfunctions 

In order to clarify the ideas discussed abov e we shall 

consider a dependent variable u(x,y , t) the evolution 

of which is governed by the non- linear equation 

M(u) = 0 (2 . 1) 

M being a non-linear operator . Equation (2 . 1) is 

supposed to be valid in the area S and u should 

satisfy given boundary conditions along the boundary 

L. Furthermore u is s~pposed to satisfy some initial 

conditions. 

For u(x,y,t) we now introduce an approximation denoted 

by v(x,y,t) . We may require v to be of the form 

v(x,y,t) = a(t) f(x , y) ( 2 • 2) 

but other restrictions are also possible . With this 

limitation, v can no longer satisfy equation (2 . 1) 

and we therefore have 

M(v) = R(x,y,t) (2 . 3) 

where the values of the residual R ' depend on the 

approximation or restriction made in v . Within 

these limitations we now wish to make the best possible 

choice and we therefore introduce the condition that R 

should be minimized in the least square sense when 

integrated over S and over the time interval (0 , T) . 

The variational problem is thus 

f f R2 dsdt = minimum 

ST 

or in view of (2.3) 
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f f Rö M(v)dsdt = 0 

ST 

5 

( 2. 4) 

Since variations by definition are small , this e quation 

will naturally be linearized in terms of the variation 

öv. If M(u) for instance contains the term u au/ax 

we shall have 

( av) d dt = J j ( R ~vx V ax S o 
av 

öv + R v Ö ax ) dsdt 

ST 

By partialintegration the second term may be transfor­

med so that the final result becomes 

f f R ö (v ~:) dsdt = J f (R av - aRv) ö v dsdt + 
ax ax 

ST ST 

+ f f dy dt 

YT 

Here, if v is supposed to be zero at the boundary we 

have öv = 0 at x 1 and x 2 and the second integral 

vanishes . If this condition is not imposed on v the 

second integral, possibly together with other partially 

integrated terms will provide natural boundary condi­

tions on v. In any case the first integral above will 

separate out and together with other terms multiplying 

the variation öv in S and T give an equation of 

the form 

f f M' (R , v) övds dt = 0 

ST 

( 2. 5) 

where M~ isa new operator on v and R, involving 

non-linear partial derivatives . In particular, if M 

includes partial time derivatives M' will also do so 

and is thus a prognostic operator . 

In (2.5) we may now consider the case when the restric-
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tion on v(x,y,t) is one of variable separation accor-

ding to (2.2). We thus have 

öv=a(t)öf(x,y) + f(x,y)öa(t) ( 2. 6) 

where öf and öa naturally are independent. Equation 

(2.5) therefore separates into the following two 

I M' (R, v) a (t) dt = 0 (2. 7) 

T 

and 

f M' (R;v) f (x,y)ds = 0 ( 2. 8) 

s 

Comparing now (2.5), (2.7) and (2.8) it is seen that if 

v is permitted an unrestricted variation öv the equa­

tion 

M' (R,v) = 0 (2. 9) 

will be a correct prognostic equation for v. If on the 

other hand the variation öv is restricted according 

to (2.6) then (2.9) is no longer valid. However, in this 

case it is seen from (2.7) and (2.8) that the operator 

M' (R,v) is orthogonal to a(t) and f(x,y) and this 

implies that if (2.9) is still used as a predictive equa­

tion for v, then the error field, created at each in­

stant will be orthogonal to the approximated variable. 

In practical application (2.9) will not be used for fore­

casting purpose. Instead equation (2.7), being integrated 

over t will provide a non-linear partial differential 

equation which together with given and natural boundary 

conditions will determine f(x,y) as a solution. The 

coefficients in this equation will depend on statistics 

of a ( t) and its time derivatives. In a similar way 

equation (2.8), being integrated over s~ wil l provide 

the necessary predictive equation for a(t), in which 
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the coefficients will depend on surface statistics of 

f(x,y) and its derivatives. 

If we multiply equation (2.8) by a(t) and integrate 

over time we obtain a relation between these two types 

of statistics. This corresponds to the usual relation 

between eigenvalues that one finds in linear problems. 

It follows that by this method different modes can be 

determined where, in each separate mode, an interdepen­

dence exists between time scale and horizontal scale. 

Considering the predictive equation (2.8) it is easily 

shown by partialintegration that if the operator M 

of (2.1) includes the time derivative a/at, then the 

operator M' will have 82/8t 2 as highest order time 

derivative. This means that the forecast equation for 

a is very different from the initial forecast equation 

(2.1). In other words, in order for an approximation to 

satisfy a prognostic equation as well as possible its 

evolution intime should not be calculated by introduc­

tion in this same equation but instead in a different 

equation of higher order. It should be noticed that 

this also holds true if in (2.2) we prescribe the func­

tion f(x,y) and thus only deal with a variation of 

a. The resulting forecast equation for a(+) will 

still be equation (2.8). 

The procedure given above may now be extended to include 

more terms in the approximation of u(x,y,t). Taking 

for instance 

v = a1 (t) f1 (x,y) + a2 (t) f2 (x,y) (2.10) 

we have 

and since these variations are independent, equations 

(2.7) and (2.8) transform into 
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3. 

a) J M' (R,v) a1 dt = 0 

T 

c) J M' (R,v) a 2 dt = 0 

T 

b) 

d) 

f M' ( R, v) f 1 ds 

s 

f M' (R,v) f 2 ds 

8 

= 0 

( 2. 11) 

= 0 

which shows that the orthogonality considerations made 

before still hold . Since it is not possible in (2.10) 

and (2.11) to discriminate between the first and the 

second term, an extra condition has to be made. Various 

possibilities may here exist but the simpliest is pro­

bably to consider f 1 (x,y) as prescribed, determined 

instead from (2.7) and thus excluding equation a) from 

(2.11). Equation c) in. (2.11) will then determine f 2 

while forecast equations for a 1 and a 2 are obtained 

from equations b) and d). This procedure may then be 

extended to any required number of terms. 

The model atmosphere 

In order now to apply the method to the construction of 

an atmospheric model we shall here consider the simp­

lestpossible case, starting from the vorticity and adi­

abatic equations in the following , approximate form 

( 3. 1) 

and 

~ ~ cltclp + J(ij; , clp)+ WOo = 0 ( 3. 2) 

Elimination of w and introduction of the geostrophic 

approximation f 0 ij; = ~ gives 

+ J ( ,/, ~)] = 0 
'r' I dp 

( 3. 3) 
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We now introduce the following approximation for the 

stream-functions 

1j) (x,y,t,p) :::. a (x,y,t) F (p) ( 3. 4) 

and obtain from (3.3) the relation 

d 1 dF 
dp (Oo dp) = 

( 3. 5) 

== R(x,y,t,p) 

where R is the residual due to the restricted form of 

the approximation. For the same reason and due to the 

geostrophicapproximation the Jacobian from the adiabatic 

equation will take the form 

f20 J(a a)_i_(K dF) 
' dp 0 dp 

and thus vanish. It should however already here be poin­

ted out that friction would make the Jacobian non-vanish­

ing and that the term therefore may be of importance. We 

shall return to this question later on. 

In order now to have a boundary condition at the surface 

of the earth we introduce for the geopotential ~ an 

approximation consistent with (3.4) or 

~(x,y,t,p) = F 0 (p) + f 0a(x,y,t)F(p) 

where Fo (p) represents a standard atmosphere. 

~aking here ~ = 0 and differentiating the expression 

on the right hand side with respect to time, we obtain 

dFo dp dF dp + da 
dp dt + f 0a- fodtF = 0 dp dt 

or 

da dFo 
dF) 

fodt F + w(-- + f o Cl = 0 ( 3. 6) 
dp dp 
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4 . 

Introducing now the same approximation into the adiabatic 

equation, it may be written 

· da dF 
fodt dp + woo = 0 ( 3 • 7) 

noting that here the operator d/dt only includes horizon­

tal derivatives. In (3.6) we now neglect the second term 

in the parenthesis multiplying w and obtain from a com­

bination of (3 . 6) and (3.7) the boundary condition at 

P = Ps 

dH' 
Sod~ - OoF = 0 

with S 0 = dF 0 /dp, the negative value of standard specific 

volume at surface pressure . 

With regard to the upper boundary at p = 0 the only con­

dition required is that F should remain finite since 

this point is singular due to l/o 0 being zero . 

Variation of a 

With the form given in (3 . 4) for the approximation of 

~ , the variational problem directly · separates into the 

two equations 

f f f R oa, R'ds dt dp = 0 

STP 

and ( 4 . 1) 

f f f R oF R ds dt dp = 0 

STP 

with R given by (3 . 5) . 
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Here the variational symbol o indicates that only a 
a 

and not F is to be varied and vice versa for oF . 

S is the horizontal area of integration with ds = dxdy. 

The boundary of S will be denoted L with dL a 

line element on this boundary . Furthermore T indicates 

the interval of time over which the forecast equation 

is to be valid and P the vertical pressure interval, 

here taken to be (O , ps) with ps equal to surface 

pressure . 

In order to have a more compact form of the equation 

we also here introduce the notation 

F * = f2 .i_ ( _l_ dF) 
0 dp 0 o dp 

( 4 . 2) 

The variational equation to be considered here is first 

fff Roa[('\iv:a + f3 ~:)F+ J(a , 92a)F 2 + 

STP 

aa *] + atF dsdtdp = 0 

( 4 . 3) 

where partialintegrations have to be carried out in 

order to obtain integrands which explicity contain oa 

or its lowest possible derivatives as a factor . 

The man ipulations are rather long and tedious and details 

of them have therefore been collected in appendix A. For 

the discussion it is sufficient here to give the resul­

ting full equation . After separation into different and 

independent variations of a or its derivatives we ob­

tain the following integrals , which all must vanish sepa­

rately . 
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f f J [Fa~:R + r,,2 72 J( a, ,R) + 

STP 

+ F S ~:] å a ds d t dp = 0 

T 

f f ~F 7 2 R + F*R)oa]ds dp = O 

SP 0 

T 

f f ~ R å ~ ~] dL dp = 0 
L p o 

T 

f f [ F ~ ~ å ~ dL d p = 0 

LP o 

o/ II [-F ~~ + F 2 J(R,a~å~~dLdt dp = 0 

LTP 

f J J F 2 R 7 a å 7 2 a dIL d t dp = 0 

LTP 

12 

( 4~ 4) 

( 4. 5) 

( 4. 6) 

( 4. 7) 

( 4. 8) 

( 4. 9) 

( 4. 10) 
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The main problem with regard to equations (4.4) - (4.10) 

is to decide if they are exactly satisfied by restric­

tions on a or its derivatives or if they give so cal­

led natural boundary or initial conditions, that have 

to be satisfied in order for R to be a minimum. 

Since 6a is arbitrary in S, Tand P a necessary 

condition for equation (4.4) to be satisfied, directly 

gives the following forecast equation for ~ 

J{F( 3::R+ s~:) +F 2 [J(R,17 2 a) + 

p 

(4.11) 

+ 17 2 J(a, R~ + F*~~}dp = 0 

Taking (3.5) into account, we see that this in reality 

isa predictive equation for a of second order in 

time and of fourth order in S. Thus, in order to carry 

out a time integration using (4.10) we have to know a 

and 

to 

we 

and 

ry. 

3a/3t initially. On the other hand, since we wish 

apply the equation to all kinds of initial fields, 

do not wish to fix a at T = 0 once and for all 

this means that 6a may at this instant be arbi tra--

In order for ( 4. 5) to hold we must then have 

J[Fl7 2 R+F*~dp=O 
p 

t=O ( 4. 12) 

which again taking (3.5) into account, determines the 

initial 3a/3t as soon as initial a is given, provi­

ded that, at this instant we also have sufficient boun­

dary conditions along L. 
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We shall here choose the simpliest possible case and 

assume the area S to be so large that we can have 

a = O and aa/an specified along L at all times. 

This makes oa = o aa/an =O in equations (4 . 6) - (4.9) 

which thereby are satisfied. Furthermore condition (4.10) 

is also satisfied since 'va • d L = da taken along L 

which vanishes with a = 0. The variation o'v 2 a along 

L is thus free. 

5 . Variation of F 

In order to simplify notations when carrying out the 

second variation of (4.1) we introduce 

and have thus to consider 

C = f 2 ~ oat 

f J f Ro [AF + BF 2 + C gp (0 ~ ~:)] ds dt dp = O 

S TP 

( 5 . 1) 

( 5. 2) 

For the third term inside the brackets we obtain after 

partialintegration 

I I f RC 
o __Q_ (_l_ dF) ds dt dp = 

dp o O dp 
STP 

I J C [_B._ o dF -
0 0 dp 

PS 
l a R 6 Fl ds d t + 

0 0 ap J 
ST 0 

+ f f I a 1 aR 
C ap ( ~ ap ) o F ds dt dp 

S TP 

( 5. 3) 

where, in the first term on the right hand side the 

integrand will vanish at p = 0 provided R and 3R/ ap 

are finite. At the boundary p = p 5 we have from (3. 8) 
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the r e l a ti on 

S 6 d F = 
o dp 

so that the natura l boundary c onditio n on R , 

unspecified and cS F = 0 at p = Ps becomes 

f f c [Rso: 
ST 

- l!3_J ds dt = 0 ap 

l :i 

taking F 

( 5 . 3) 

Carrying out remaining v ariations in (5 .2) and t aking 

(5 . 3) into account we obtain 

f f [R (A +2BF) + C }p ( 0~ ~ : j ds dt 0 

ST 

which in view of the definition of R is a fourth o rde r 

non-linear differential equation for F . Denoting 

f I a( x, y , t) b( x, y , t) dsdt = ab 

ST 

and introducing R from (3.5) equations (5. 4 ) a nd (5. 3) 

become 

AC ~ ( _l._ dF ) + 2 BC F ~ ( _1__ dF ) + 
dp o O dp dp o O dp 

( 5 • 5) 
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and at p=ps 

~ 'LA C F + B C F 2 + c2 ~ 
S 0 dp 

1 dF 7 
o O dp ~ = 

= ~ I A C F + B C F 2 + 2 ~ ( -~ dF ~ 
dp L dp 0 O dp J 

( 5. 6) 

If we here divide by C2 and furtherrnore apply anor­

malizing condition on F, only four statistical quanti­

ties need to be known in order to solve equation (5.5) 

with the boundary conditions (5.6) and (3.8). However, 

these statistics are not known . 

~he situation is in sorne respects sirnilar to the one in 

linear problems. An infinity of solutions exist, all sa­

tisfying the equation and the boundary conditions. And 

in order to make the solution determinate we need to 

know initial data and - if dissipation is included -

also the external forcing. 

Data of this kind are not directly available. The func­

tions a(x,y,t) cannot be determined from observations 

unless F is given and vice versa. We therefore have 

to treat atmospheric data in a different way in order 

to find solutions to equation (5.5). 

In the approximate relation (3.4) we shal l now let 

~(x,y,t,p) represent measured values of the stream func­

tion, derived from geopotential data by means of the 

geostrophicapproximation. Utilizing these data we now 

wish to determine empirical functions a(x,y,t) and 

F(p) with the condition that the residual in the approx­

imation becomes as small as possible. The variational 

problem is 

0Jff[~(x,y,t,p) - a(x,y,t)F(p)J 2 dsdtdp = O 

STP 

where both a and F are to be varied. It is not sur-
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prising that we here recognize the basic principle in 

the derivation of empirical orthogonal functions - in 

too many applications thought of only as eigenvectors 

toa covariance matrix. Carrying out the variation we 

obtain a system of two integral equations from which 

either a or F can be eliminated. Chosing to elimi­

nate a we find 

µf K(p,p')F(p')dp' = F(p) ( 5. 7) 

or in matrix notation 

KF = :\F :\ = 1/µ 

where the kernel K(p,p') 

(matrix) 

is the covariance function 

K(p,p') = JJw(x,y,t,p)ijJ(x,y,t,p')dsdt 

ST 

and µ, the eigenvalue of the Fredholm integral 

equation is defined by 

1 
1-1 

= f Ja 2 (x,y,t)ds dt · }F 2 (p)dp 

ST P 

The eigenfunctions of ( 5. 7) form an orthogonal set 

and give in a series expansion of observed stream func­

tion data the fastest possible convergence with an opti­

mized variance reduction for each term . 

It is now of interest to discuss the extent to which our 

theoretical l y derived functions a(x,y,t) and F(p) can 

be identified with those obtained from expansions of 

observational data. ~oing back to equation (3.3) we may 

there introduce 1/J = aF + v' and move to the right hand 
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6. 

side all terms that contain ~ •, retaining on the 

left hand side only those that are found in the same 

place in (3.5). Taking then ~ • = 0 at each initial 

moment, which is necessarv since this is the only acp­

roximation we permit, we see that R is nothing but 

the instantaneous production of potential vorticity in 

~• and that R2 is the corresponding creation of po­

tential enstrophy. But this we have minimized and equa­

tion (5.5) will therefore give the vertical structure 

of modes in the atmosphere that for as long as possible 

will retain their enstrophy, the loss being due to the 

interaction of the mode with itself. Provided these mo­

des are generated by the external forcing one would al­

so expect them to be dominant in the atmosphere and it 

should therefore be possible to find solutions to (5.5) 

that are identical or almost identical to those föund 

from empirical data. 

One major condition for this is, however, essential . 

The equation for F is derived from a combination of 

the vorticity and the adiabatic equations in a form 

where a considerable amount of approximation has been 

made and where for instance friction has been entirely 

neglected. A complete identity is therefore not to be 

expected . Instead it would seem posssible to take ad­

vantage of deviations in order to detect approximations 

that should not have been made. 

Linearized model 

In the previous se~tions we have used the stream func­

tion as dependent atmospheric variable. Since no expan­

sion into empirical orthogonal functions exist on such 

data we shall here compare with results from expansions 

of observed geopotential heights, taking advantage of 

the geostrophic approximation. A certain caution is he­

re necessary since the approximation is not always va­

lid. 

Expansions of geopotential data have been made by 

Obukhov (1960), Holmström (1963) and others and we 

shall here, for reference, utilize results obtained 

by Holmström. The first four empirical functions F(p) 
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are reproduced in fig. 1. They are normalized to l 

over the interval 1000 - 100 mb. The dominance of the 

first mode in these hemispheric data from 7 days in 

October 1959 is very pronounced with r.m.s. values 

of corresponding a - functions being 236.2, 42.5, 

20.l and 10.2 m. respectively. 

I O m b • 10 2 -,----,- - ,-- ---~.-·- ·· r- --,- - --,---, - -· r-r-·1 

I 

Fig. 1 First four functions F(p) in expansion of 
geopotential data into ernpirical orthogonal 
functions. 

For the comparison between theoretical and empirical 

results weshall not in this paper use the full equa­

tion (5.5) but instead consider a simplified version 

which is more easily discussed. Since the circulation 

pattern of the atmosphere toa major part is characte­

rized by waves of rather sinusoidal form and relative­

ly small amplitude it seems reasonable to assume that 

equation (5.5) would give realistic vertical profile 

functions even if the corresponding a - field is li ­

nearized. We shall therefore here only consider small 

perturbations on a zonal flow and for a introduce 
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0, = U + A ik(x-ct) 
- oY a e ( 6 . 1) 

where Uo and & are constants and is small . 

In s te a d of introducing this expression jn (5 . 5) we may 

here proceed in a different way . From (3 . 5) and (6 . 1) 

we obtain 

R = 

and from (4 . 10) 

F J . 1, A ik (x- ct) 
C ! lJ\. O, e 

J 

where second order quantities in a have been neglec ­

ted . If we here look for stable solutions with the pha­

se velocity c being real , this relation cannot hold 

unless the integrand vanishes at all p . We therefore 

have 

( 6 • 2) 

where the expression for p* in (4 . 2) has been re­

introduced . 

A few characteristic properties of solutions to eq. 

(6 . 2) were discussed by Holmström (1964) but there 

the equation was not properly derived and the presen­

tation of computational results not adequate. An ex­

tended treatment is therefore given here. 

Equation (6 . 2) which for o 0 = constant has elliptic 

functions as solutions , has with o variable also 

certain interesting properties . First of all it is 

directly seen that if F = 1 we obtain the Rossby 

phas e velocity relation . A slightly modified form is 

also obtained if the equation is integrated over p 



r 
+ 
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with the boundary conditions dF/dp = 0 at 1000 mb 

and dF/o 0 dp = 0 at p = 0 the modification depending 

on the integrated value of the normalized function F. 

By taking F = wG where w isa constant it is also 

easily shown that the coefficient of F 2 has no influ­

ence on the form of the solution. It determines only 

its amplitude and sign and may therefore be arbitra­

rily chosen so as to make the solution normalized and 

to be positive at p = 1000 mb. As will be seen the 

properties of the solution are only determined by i ts 

absolute value at 1000 mb and by the cofficient in 

(6 . 2) multiplying F~ This coefficient has here the 

character of an eigenvalue but the similarity with 

linear equations is not complete. It is convenient 

for the demonstration to introduce the notation 

a2 = k 2 c + B i ( 6. 3) 

so that the equation ·becörnes 

( 6 . 4) 

If we here introduce 

F = wG + v ( 6. 5) 

where w and v are constants, we find from (6.4) 

p~P(¾ ~~) = (a 2 -2b 2 v)wG + v(a 2 -vb 2 )·-b 2 w2 G2 (6.6) 
0 

If we here determine v so that 
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a 2 - vb 2 = 0 ( 6 • 7) 

equation (6 . 6) transforms inta 

( 6 • 8) 

which only differs from (6 . 4) by the sign of the ei­

genvalue and by possibly a different normaljsation 

of G depending on the arbitrary constant w. 

Multiplying now (6 . 8) by F, (6 . 4) by G and taking 

the difference we obtain 

where the relations (6 . 5) and (6 . 7) have been taken 

into account . It is here seen that F and G are 

orthogonal functions provided they satisfy a boundary 

condition of the type g i ven in (3.8). On this condi­

tion we have to (6.4) pairs of mutually orthogonal 

solutions corresponding to opposite signs of the eigen­

value and related linearly through equation (6 . 5) . 

With this result in mind it is interesting to compare 

the two first functions given in fig . 1 . Determining 

w and v in (6 . 5) so as to give the best possible 

fit in the intervals 1000 - 100 mb and 1000 - 250 mb 
, ,, 

we obtain from values of F 1 the curves F and F in 
2 2 

fig . 2, compared wi th F2 • In spi te of the difference 
I I 

above 250 mb the similarity between F and F is 
2 2 

striking and seems to imply the validity of this cha-

racteristic also in empirical data . 
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Fig . 2 Comparison between the function F2 (p) of 
fig . 1 with corresponding functions F2 '(p) 
and F2 "(p) calculated from F 1 (p) . 

A further point of interest in equation (6 . 4) is the 

r ole of the non- linear term . Taking a 2 positive the 

effect of the linear term is to make the solution di ­

ve r ge from the p - a x is . For positive F the non- linear 

t erm with its negative sign is therefore necessary in 

o rde r to recurve the solution towards zero and to satis ­

fy realistic boundary conditions . For negative F the 

solution is seen to diverge and consequently no bounda­

r y c ondition at p=0 can be satisfied . 

Turning now to numerical integrations of equation (6 . 4) 

a s ample of calculated profiles for F is shown in 

f i gure 3 . Integrations have been carried out from 

pre s cribed initial values of F at 1000 mb in steps 

o f 1 mb and in the first step satisfying the boundary 

condit i on (3 . 8). Values for 0 0 have been taken from 

Holms t röm (1963) , interpolated in the interval 1000 -

20 0 mb and from there on e x trapolated assuming a smooth 

transition toan isothermal stratosphere . The solutions 

h ave n o t been renormalized . 
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0 

24 

0.5 1.0 ,.s 

Fig . 3 Profiles F(p) calculated from eq . (6.4) 
with a 2 = 5 · 10-4 , b2 = 6.25 · 10-4 and 
varying values of Fat p = 1000 mb. 

Calculations in figure 3 have been made with a 2 = 5 · 10 
4 4 1 1 

and b 2 = 6.25 · 10 Taking f 0 = 10 and B = 10 

various values of k(or wavelength L) correspond to the 

values of C and U0 given in fig. 4 . Different ini­

tial values at p = 1000 mb have been prescribed and 

we shall here use these fnr refArAnce . 

~rom fig. 3 it is seen that all curves become negative 

before reaching 5 mb . They will diverge rapidly towards 

infinite values and the curves therefore in this cal-

4 
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Fig. 4 Relation between wave number K and phase 
velocity c and zonal wind u 0 for values 
of a2 and b2 used in fig. 3. 

culation do not represent solutions that satisfy the 

upper boundary condition. In sorne cases this rnay be due 

to the integration step. 1 rnb, being toa large close to 

the singularit½ but this point is here not of special 

interest. More interesting is the fact that vertical 

gradients as well as curvature becorne very large even 

in a z-systern and one would therefore expect turbulen­

ce to be generated at certain levels. The neglect of 

friction in the initial set of equations is therefore 

likely to be of crucial irnportance. 

The effect of the neglect of friction is also evident 

in the curves 0.6 - 1.0, which give unrealistic values 

of the wind at the ground, taking the geostrophic approx­

imation into account. The drag should lower considerably 

the value of the function at 1000 rnb. Naturally a re-
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de r iva t ion of th e e q uations s hou ld t herefore be ma de , 

inc luding fr oD the beg inning a n exD r e ssi on for the f ri c ­

tion . This woul d als o affect the ge o s troph i c app roxima­

tion and make for instance the Jacobian in t he thermo­

dynamic equation non-vanishing . It would however also 

ne c essitate inclusion of an external f o r c ing t o balance 

dissipation and this would not only complicate the treat­

ment but also make the results dependent o n r a t h er ar ­

bitrary assumptions . We shall therefore in t h is p aper 

take surface friction into account simply by relax ing 

the lower boundary condition (3 . 8) and carry out the 

calculations and the comparison assuming that at 1000 

mb the theoretical solution should have the same value 

and the same slope as the empirical function . 

Recomputing F with this boundary condition we obtain 

the results shown in fig . 5 for varying values of a 2 

and b 2 • Up to levels around 250 mb some of the curves 

show a striking similarity with the empirical one but 

above this level we again notice a much larger curvature 

and much steeper gradients . This may be due to lack of 

f riction but other approximations may also be involved . 

we also notice that solutions remain rather similar for 

a wide range of values of a 2 • This implies that the ver­

tical structure of the model atmosphere and most pro­

bably also the real atmosphere does not toa large ex­

tent depend on the circulation pattern itself but much 

more on the average static stability and on surface 

friction . This is corroborated by the dominance of the 

first empirical orthogonal function in expansions of the 

geopotential . One may here also see a reason why one pa­

rameter models indeed give comparatively good results in 

short term forecasting . 
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Fig. 5a,b Profiles F(p) calculated from eq. (6.4) 
with relaxed boundary condition at p = 

1000 mb and compared with empirical F1(p). 
Values of a 2 are given beside the curves. 
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7. Conclusion 

The purpose in this paper has been to draw attention to 

the fact that in parameterizing a non-linear predictive 

equation - as we always do in meteorology - the parame­

ters should not be predicted with the same equation as 

the variable they replace. Instead a higher order equa­

tion may be derived which minimizes the approximation 

made when introducing the parameters . The variational me-

thod employed also defines eigensolutions to the mathe­

matical model of the atmosphere. Some of these should 

be similar to those found from empirical data . If this 

condition is not satisfied the conclusion should be that 

the mathematical model does not sufficiently well simula­

te the real atmosphere. In such a case one also cannot 

expect the predictive equations to give useful results. 

Starting from aset of approximative equations and dras­

tically simplifying computations we have shown that the 

eigenfunctions to the mathematical model have certain 

characteristic properties common with the real atmosphe­

re. However, certain obvious differences exist. These 

may be due to neglect of friction in the mathematical 

model but other sources of error are also possible. A 

more comprehensive treatment of the problem is therefo­

re required in order to determine the simplest possible 

mathematical model of the atmosphere which still has 

"eigenfunctions" that sufficiently well resemble the 

lowest three or four empirical functions . 
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Appendi x A 

Starting with the first term in (4 . 2) we first integrate 

partially with respect to time , obtaining 

T 

= JJ [RF c59 2a] ds dp -

S TP SP 0 

(A. 1) 

- f f J F ~: c5V 2 ads dtdp 

STP 

since F isa function of p only . On both terms on 

the right hand side we now utilize Greens theorem 

I a 9 2 bds = I b 92 a + 

s s 

This gives directly 

f Jf 
RF 39 2a 

cS ~ ds dt dp 

STP 

= fr [F 92 
) ) 

R c5 

SP 

- f f J 
STP 

3 2 R 
- Tian c5 al dL dt dp 

( 3b 
r(a- -3n 
L 

= 

b~) 
3n 

~ c5 
3n 

dL 

T 

a] dLdp­
o 

(3R 0 ~_ 
3t 3n 

The next term to be dealt with is the Jacobian, 

(A. 2) 

(A . 3) 

where we first notice tha t, since c5 

rizing operator , we have 

isa linea-
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I I I R F 2 0 J ( C( , I/ 2 
C( ) d S d t d p = I I I R F 2 [J ( 0 C( 1 'Il 2 C( ) -

STP STP 

- J ( å V 2 ex , ex~ ds d t dp 

We shall also utilize the following two relations , 

which are easily verified 

J(a,b) = lk · (Vax Vb) = lk • [v x (a'vb~ 

and, if c = c(x,y) 

cJ(a,b) = J(ac , b) - aJ(c , b) 

Combining (A . 5) and (A . 6) we have 

f c J ( a, b) ds = J J ( ac, b) ds - f a J ( c, b) ds = 
s s s 

= f [v x (ac Vb)]d$ - f aJ(c , b)ds 

s 

or, using Stakes theorem 

r C J (a 'b) ds 
) 

s 
= f ac'vb•dL - f aJ(c,b)ds 

L S 

(A . 4) 

(A. 5) 

(A. 6) 

(A . 7) 

In these equations d$ isa vector surface element of 

S and dL a vector line element along L . 

Combining now (A. 4) and (A. 7) and taking c = R , a = å a 

and b = V2 cx in the first case and a = å'v 2 cx and b = V2 cx 

in the second , we find 

f I f RF 2 o J(cx , V2 cx)ds dtdp = 
STP 
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f f f F 2 R v' ( v' 2 cx ) öcx • dL dtdp - J f f F 2 J (R, v' 2 cx ) öcx ds dtd;_)-

LTP STP 

- f f f F 2 R v' Cl O O v' 2 Cl d[., d t dp + f I f F 2 J ( R, Cl) 0 v' 2cx ds dt dp 

LTP STP 

or, using (A.2) on the last integral 

f f f R F 2 ö J ( a , v' 2 a) ds d t dp = 
STP 

- fff F 2 [J(R,v' 2 cx) + v' 2 J( cx,R ~ öadsdtdp 

STP 

clJ (R, a) öcxl dl dtdp 
cln J 

(A. 8) 

The variation of the B-term is easiest to carry out 

if we write it under the form of a Jacobian. Repeating 

previous procedures we find 

f f f 
STP 

S F Rö~ d s dt dp 
clx 

- J ( R , f) ö aJ d s d t d p 

= f f f F~(Röa,f) -

STP 

= fff FRv'föiµ • dLdtdp - fff FB ~: öcx dsdtdp 

LTP S TP 

(A. 9) 
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Collec ting now results and including also the trans­

f o rmation of the time - derivative from the adiabatic 

equa tion we find 

+ f f 
SP 

p* clR + p2 J(R ,'v 2a ) + 
cl t 

T 

[ (F'v 2 R + F*R) oa] 
0 

T 

- -öa clR J 
cln 

0 

dsdp + 

dLdp 

+ o/ I f { F ( clcl: :n ö a - ~: ö ~ ~) + 
LTP 

+ o/ f f { F 2 R [ V ( V 2 a ) ö a - Va ö V 2 a] + 

LTP 

+ F R V f ö a} • dJL d t dp = 0 

(A. 10) 

j 
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