Per Pemberton
PhD. Forskare vid SMHIs oceanografiska forskningsenhet.

Per Pemberton
Kontakt, nätverk och CV
- E-post: per.pembertont@smhi.se
- Telefon: 031-751 89 84
- Research Gate: Per_Pemberton
- Per Pemberton, CV Pdf, 245.4 kB.
Publikationer
Verksamhetsområden
Jag är forskare inom fysisk oceanografi med huvudinriktning på havs- och havsismodellering. Min forskning riktar sig främst till att förstå hur olika fysikaliska processer påverkar tillstånden i de Arktiska havet, Nordiska haven och Östersjön, och hur det kan komma att ändras med klimatförändringar. I min forskning försöker jag ofta sammanfoga resultat från avancerade storskaliga havsmodellsimuleringar med förenklade dynamiska teorier för att förstå vilka nyckelprocesser som styr de olika havsområdena.
Forskningsintressen
- Färskvattensprocesser och omvandling av vattenmassor i Arktiska oceanen (Doktors ämne)
- Dynamiska teorier för Arktiska oceanen
- Prediktabilitet
- Havs- och havsismodellering
- Fältstudier av havsis
- Marin fjärranalys
Hydrographic effects in Swedish waters of future offshore wind power scenarios
Lars Arneborg, Per Pemberton, Nathan Grivault, Lars Axell, Sofia Saraiva, Erik Mulder, Sam Fredriksson
I: RO, Rapport Oceanografi
2024
Sammanfattning
For two future scenarios on the expansion of offshore wind power in the Baltic Sea and the North Sea, SMHI has investigated how the hydrography, i.e. temperatures, salinities, currents and stratification, may be affected. Effects were induced by wind stress reductions on the sea surface and by the increased friction and turbulence in the water from wind turbine foundations.
The results show that an expansion of wind power in the Baltic Sea in general will cause a shallowed halocline, and increased deep water salinities and temperatures, due to decreasing winds behind the wind farms that lead to decreasing vertical mixing in the Baltic Sea. However, the magnitude of changes shows a strong sensitivity to assumptions about the wind stress reduction at the sea surface, and the size of wind power expansion.
The wind farm scenarios are prepared in collaboration with the Swedish Agency for Marine and Water Management (SwAM) and are based on marine plans from Sweden’s neighbouring countries as well as new proposals for suitable wind power areas that SwAM will present to the government in 2024. In one scenario, Scenario 1, it is assumed that there will be offshore wind in all proposed areas, while in the second scenario, Scenario 2, it is assumed that only 50% of areas will be developed. Both scenarios represent large offshore wind power developments that will probably not be realized in reality. The scenarios have been investigated by running an ocean model for the Baltic Sea and the North Sea with and without wind power for the period 1985 – 2016 to evaluate how different the sea would have looked if the wind power had been built in 1985 according to the scenarios.
There is still lack of knowledge about how wind farms affect the wind at the sea surface, so this work is based on studies of existing wind farms in the North Sea, where studies show a reduction of the wind by around 8% and an area that extends about 30 km behind the wind farm under stable atmospheric conditions. When the atmosphere is unstable, which it often is in winter, the reduction is less. In order to get an estimate of the largest and smallest possible impact of wind power on the sea, we have therefore, for both scenarios, assumed that the reduction of wind only exists in summer and no reduction during winter (minimum possible impact), or that the reduction exists all year round (upper limit of impact).
The magnitude of expected changes is very dependent on the assumptions on the wind wakes, and the response is much smaller for the minimum possible impact than for the upper limit impact. The real response for these scenarios probably lays somewhere in between these estimates.
For the scenario with less wind farms in Swedish waters (Scenario 2), the influences on salinity, temperature, and halocline are reduced relative to Scenario 1 in a manner that may be expected from the difference in total wind farm areas in the Baltic Sea in the two scenarios.
The model results also show that the wind power foundations (modelled as bottom mounted) cause a salinity decrease in the Baltic Sea deep water, probably due to increased friction and mixing in the entrance region to the Baltic Sea. This effect is much smaller than the wind wake effect when it is active during the whole year.
The Baltic Sea surface salinity, surface temperature, and currents show much smaller and less robust changes than the salinity and temperature changes in the deepwater.
Framtida isutbredning i svenska farvatten
Per Pemberton, Lisa Lind, Anette Jönsson, Lars Arneborg, Lars Axell, Magnus Hieronymus
I: Oceanografi
2021
Sammanfattning
SMHI har analyserat hur havsisens utbredning och beskaffenhet i Bottenviken, Bottenhavet, Ålands hav och Norra Östersjön kan komma att förändras i ett perspektiv på 20 respektive 50 år, vilket motsvarar runt år 2040 och 2070. Analyserna utgår från sju indikatorer som beskriver olika aspekter av havsisens förändring. Indikatorerna är framtagna i samråd med Sjöfartsverket och valda både utifrån tillgång till data och med syfte att vara relevanta ur isbrytningsperspektiv.Som underlag för analyserna ligger historiska observationer från SMHI, det Finska Meteorologiska Institutet (FMI) och Sjöfartsverket, samt klimatscenarier framtagna i tidigare projekt.Klimatscenarier som representerar två olika utsläppsscenarier (RCP4,5 och RCP8,5) har analyserats från totalt tio olika klimatmodellsimuleringar. Klimatscenarier baserade på det lägre utsläppsscenariet (RCP2,6) saknas i underlaget eftersom befintliga klimatmodellsimuleringar för detta scenario bedömdes ha för låg kvalité. Tidsramen för denna utredning medgav inte heller framtagande av nya klimatscenarier.Resultatet av analyserna visar att framtidens isvintrar blir lindrigare med avseende på havsisens maximala utbredning jämfört med kontrollperioden (1975–2004). Issäsongens längd blir också kortare, med störst förändring i de södra delområdena. Inget scenario indikerar dock helt isfria vintrar, och åtminstone Bottenviken väntas i medel bli helt istäckt även i framtiden. I södra Bottenviken kommer is tjockare än 10 cm dock att försvinna för RCP8,5. På 20 års sikt är förändringen av den maximala isutbredningen mindre tydlig på grund av en fortsatt stor naturligt förekommande väderdriven mellanårsvariation. På 50 års sikt däremot är signalen tydligare och visar minskad isutbredning och en något mindre mellanårsvariabilitet.Istäcket förväntas bli tunnare i medel i samtliga delområden och utbredningen av tjock deformerad is förväntas minska. Modellerna saknar dock förmågan att simulera så kallade stampisvallar. Dessa vallar bildas då tunnare is pressas upp mot en landfast iskant eller land vid kraftiga vind- och vågförhållanden, och kan utgöra ett problem för sjöfarten även under lindriga isvintrar. Tunnare och glesare is kommer även att leda till ökade isdriftshastigheter i Bottenviken och Bottenhavet.Antalet dagar med utfärdade isrestriktioner till svenska hamnar förväntas minska i takt med att issäsongen blir kortare och isförhållandena lindrigare. Fördelningen av isrestriktioner förändras också, främst i Bottenviken där de högre isklasserna (1A/B) minskar till fördel för de lägre isklasserna (1C/II) som istället ökar.Förändringar i isutbredning, issäsongens längd och jämnisens medeltjocklek bedöms ha en låg osäkerhet eftersom resultatet styrks av både observationer bakåt i tiden och modellsimuleringarna som ligger förhållandevis nära observationerna. Förändringar i deformation, istjockleksfördelning och isdrift bedöms ha en hög osäkerhet eftersom det saknas eller finns väldigt få observationer som kan styrka resultatet från modellscenarierna.Utredningen begränsas delvis av att data för det lägre strålningsscenariot RCP2,6 och analys av eventuella förändringar i väder- och vindförhållanden saknas. En annan begränsande faktor som kan påverka resultatens tillförlitlighet är det låga antalet regionala klimatmodellsimuleringar med tillförlitliga isparametrar.
Arctic Ocean Freshwater Dynamics
Nicola Jane Browny, Johan Nilsson, Per Pemberton